
Enabling Low Impact, Rapid Debug for Highly Utilized FPGA Designs

Robert Hale
robert.hale@byu.edu

Brad Hutchings
brad hutchings@byu.edu

Abstract— Inserting soft logic analyzers into FPGA circuits
is a common way to provide signal visibility at run-time,
helping users locate bugs in their designs. However, this can
become infeasible for highly (70-90+%) utilized designs, which
leave few logic resources or block RAMs available for internal
logic analyzers. This paper presents a fast, low-impact method
of enabling signal visibility in these situations using LUT-
based distributed memory. Trace-buffers are inserted post-PAR
allowing users to quickly change the set of observed nets.
Results from routing-based experiments are presented which
demonstrate that, even in highly utilized designs, many design
signals can be observed with this technique.

I. INTRODUCTION

It is widely understood that debugging FPGA circuits
in-system is extremely challenging because observing the
behavior of signals typically requires the insertion of invasive
debugging circuitry. In-system test and debug is necessary
because simulation is often unable to test the user circuit
with rich data sets in timely fashion. In the simplest case,
inserted debugging circuitry may consist solely of wires that
route internal signals to external pads where they can be cap-
tured and observed with a logic analyzer. More commonly,
complex debug circuitry that resembles the data-recorder of
a logic analyzer (referred to as an Integrated Logic Analyzer,
or ILA) is inserted into, and placed and routed with the
original user circuit.

It can be difficult or impossible to insert an ILA in
industrial designs as they are finalized because engineers
typically attempt to exhaust as much of an FPGA device as
possible in order to achieve lower cost. For example, once
engineers implement circuits that utilize FPGA devices at
90%, or if their designs completely consume all available
block RAMs (BRAM), it may become difficult or impossible
to insert and use an ILA.

The goal of this project is to provide an alternate de-
bugging tool that can be used when ILA insertion is not
possible or feasible. This debugging tool is implemented
post-place/route to minimize impact on the user’s design
and reduce implementation time. BRAMs aren’t used for
memory, leaving these resources fully available to the user
design.

This tool achieves observability by scavenging for unused
shift-register LUTs (SRLs) in a design and using them,
paired with a 2-to-1 MUX, to capture and upload user-
signal values at run-time. In Xilinx devices, SRLs are 16-
or 32-bit shift registers that can be implemented on 50%
of the device’s LUTs. Thus, unused SRLs are commonly
available even in highly utilized devices. For each signal
the user wishes to probe, the tool finds the closest available

SRL, routes it to its respective signal, and then connects all
thusly used SRLs together into a single shift-register. During
circuit operation, user signal values are captured in these
SRLs. Once the defined trigger signal occurs, signal capture
stops, and the captured values are shifted out to the JTAG
port via inserted BSCAN primitives. Though this SRL-based
approach may not provide as deep of a trace of user signals
as an ILA might, it does provide observability when ILAs
are infeasible or when it would take too long to place and
route them into the user design.

This SRL-based debugging approach uses the recently
introduced RapidWright [13] from Xilinx to add SRL prim-
itives after place and route. RapidWright is an open source
platform that provides an interface to Xilinx’s Vivado back-
end implementation tools. This SRL-based approach queries
the Vivado circuit database via RapidWright to do the follow-
ing: (1) determine the location of available SRL primitives,
and (2) place the SRL primitives near their corresponding
user signal. Routing of the circuit to the SRLs is completed
via the Vivado back-end routing tool.

II. RELATED WORK

A. Commercial Debug Tools

FPGA vendors provide internal debug tools to work with
their hardware, such as Xilinx’s Integrated Logic Analyzer
[3] and Altera’s SignalTap [2]. These tools offer a powerful
method of viewing design signals in real time. However, they
also require substantial resources for their implementation.
In addition, these tools typically cannot be added to a
user circuit post-map and require the entire user circuit
to be re-placed and re-routed. If the engineer wants to
change the set of nets being probed this entire compilation
process needs to be repeated. For complex and highly utilized
designs such iterating can consume an unacceptable amount
of time. Some commercially available design tools include
incremental functionality that attempts to reuse placed or
routed elements to reduce compilation time, however, our
tests of these features showed only trivial improvement.
Finally, these tools require the presence of unused BRAMs
that are relatively limited on FPGA devices.

B. Academic Tools

Several research projects have attempted to address the
issues with FPGA debug visibility. Ideas have included
guessing what nets should be probed beforehand [5] [17]
or attempting to probe nearly every net in the design [1].
Other techniques involve scanning the entirety of the FPGA’s
current status [16] [15], referred to as readback. This gives



Fig. 1. MUX-SRL Pair Chain

full visibility and requires no added logic or use of FPGA
resources, but requires stopping the DUT and offers no signal
history.

One research effort has sought to imitate software debug-
ging as closely as possible for FPGAs [11], including full
breakpoints and live variable visibility. This comes at the
expense of high FPGA fabric overhead. One similarity this
method shares with our tool is avoidance of BRAM use,
favoring distributed LUT memory.

Other researchers have proposed ways to reduce the time
it takes to insert debug circuitry by instrumenting the circuit
post place/route, or by partitioning the debug circuitry into
a small area on the chip [7] [6] [4] [8]. Overlays have also
been proposed to enhance debugging of FPGAs[9].

The most similar work to that presented here is that of
Keeley and Hutchings [10]. Their debug tool is similarly
instrumented post-implementation with RapidSmith [12].
However, the produced trace buffers are more similar to other
research methods in their use of BRAM trace buffers.

Our SRL-based debug trace buffer tool differs from previ-
ous work because it focuses on designs that highly utilize the
FPGA device (70% or higher). Alongside the benefit of re-
ducing debug time with incremental insertion, our tool finds
trace amounts of unused logic resources and utilizes them
to enable debugging. Where other internal debug methods
would fail due to high resource needs or exhausted BRAMs,
our SRL trace buffers can squeeze into crowded designs and
provide at least some amount of signal visibility.

III. SRL-BASED DEBUGGING

Instrumentation of our debug tool is executed using a
software suite of Xilinx FPGA design editing tools called
RapidWright [13]. RapidWright allows post-PAR modifica-
tion of design files. RapidWright is similar to its parent tool,
RapidSmith [12]. The instrumentation steps are listed below,
starting with the user design.

a) User Design: The user creates a design and com-
pletes the Xilinx Vivado design implementation process. Nets
to be debugged are marked for debug in the typical Vivado
flow and the design is exported to RapidWright.

b) Insert Probes: SRL-based trace buffers, consisting
of a 16-bit SRL coupled with a 2-to-1 MUX, are inserted
into the design. One is created for each net requested for
probing. The source tile of the debug net is identified, and
the trace buffer is placed as close as possible to minimize
timing issues. However, if needed, the trace buffer can extend
to any location on the chip with unused LUTs. The trace
buffer is then linked to the chain of other trace buffers in the
design (see Figure 1).

SRL-based trace buffers operate in two modes, operation
mode and debug mode. In operation mode the MUX passes
the value on the debugged net into the SRL. The SRL
connects to the same clock that drives that net, recording each
subsequent value. Data is stored in first-in, first-out fashion.

Debug mode is used after triggering has occurred and
debug data is requested. In this mode, the MUXs of all MUX-
SRL pairs will chain together, passing data to the next MUX-
SRL pair. The last pair passes data to a BSCAN primitive
that interfaces with the host. The correct number of data bits
is collected by knowing beforehand how many MUX-SRL
pairs have been instrumented into the design.

c) Route, BitGen: After instrumentation, RapidWright
produces a new, modified design checkpoint. Xilinx tools
are then used to ensure the design is without error, route
the design, and generate a bitstream. Route is performed
incrementally, meaning that the original user design will
be left undisturbed where possible and run-time is minimal.
Xilinx bitgen then generates the bitstream.

d) Debug: The bitstream is downloaded to the FPGA
and the hardware target is closed from program mode and
reopened in JTAG mode. Once the debug system has been
triggered, the engineer can send appropriate commands over
JTAG to request data from the MUX-SRL chain. This data
becomes visible at the user terminal. Scripting is then used to
format this data and view it in a waveform. Since the order
of the chained SRLs is known, data can be identified by
net name automatically. The entire tool-chain was tested and
found to correctly capture and display data captured from a
simple counter. For the larger benchmark used in this paper,
only routing experiments were performed.

IV. ROUTING EXPERIMENTS

The goal of this work is to show that the SRL-based
debug approach can successfully route to a high percentage
of user signals even when the user circuit nearly exhausts all
resources on the FPGA device. Successful routing of user
signals will depend on the availability of SRL primitives near
the desired signal, routing congestion, etc. The approach to
the experiments is as follows. For example, assume that you
want to determine the likelihood of routing a set of 10 signals
in a circuit that utilizes 90% of an FPGA.

1) Randomly select 10 signals from the user net-list.
2) Connect the selected signals to available SRLs.
3) Attempt to route the design.

Repeat this process N times (selecting a different random set
of signals each time). If, for example, N/2 of the attempts
successfully routed, you may predict that, on average, 10



Fig. 2. Outcomes for Experiments on a 70% Utilized Design. At 70% utilization a very high number of probes can be instrumented. While the ILA held
out for up to 600 probes, the SRL based approach was able to get a reasonable success rate of over 50% up through 1500 probes. Absence of a red or
blue bar means all experiments failed for that value.

Fig. 3. Outcomes for Experiments on a 80% Utilized Design. When the FPGA’s LUTs are 80% utilized, the ILA can only be inserted with up to 240
probes. This design didn’t show an early hard cutoff for the SRL based tool, but success drops to 50% after about 900 probes. Absence of a red or blue
bar means all experiments failed for that value.

Fig. 4. Outcomes for Experiments on a 90% Utilized Design. Once the design reached 90% utilization, Xilinx tools were unable to probe even 12 nets.
The SRL debug tool was able to probe up to 144 nets with a high success rate, never falling below 75%. At this point success falls to zero, as the LUTs
on our FPGA reach 100% utilization, a hard cutoff point. Even so, on designs with as high as 90% design LUT utilization, our SRL-based tool was able
to probe 2304 bits worth of debug data. Absence of a red or blue bar means all experiments failed for that value.

signals can be successfully routed in a highly-utilized device
about 50% of the time. For these experiments, N is equal
to 200. These experiments are repeated for varying numbers
of signals (from 10s of signals to 1,000s of signals) and are
applied to three benchmark circuits (70%, 80%, and 90%
LUT utilization for a Kintex Ultrascale XCKU025 containing
145,440 CLB LUTs). The benchmark circuit is created by
implementing an array of LC-3 [14] soft processors. The
success rate for the SRL-based approach is compared against

the success rate for Vivado’s ILA by routing the ILA with
the same sets of signals.

During the instrumentation phase, checkpoint files con-
taining the benchmark designs are edited using RapidWright
tools. These tools insert and place MUX-SRL pairs in the
benchmark design for each net marked for debug. Next,
Vivado route is run to connect the pins between probed nets
and the MUX-SRL pairs. Placement, however, is completed
entirely during the RapidWright stage and user design logic



Average Time Consumed (minutes)
Design LUT density SRL-based ILA-based
70% 12 76
80% 15 42
90% 14.5 N/A

TABLE I
IMPLEMENTATION TIME FOR SRL AND ILA

placement remains unaltered. ILA-insertion experiments re-
quired a complete re-implementation of the design (place
and route). We chose a standard level of optimization in an
attempt to give both tools a roughly equal chance at success,
as well as keep runtime moderate. For our tool, incremental
route is allowed to rip-up and replace nets only where
needed. All of the above steps are completed in an automated
fashion on a remote supercomputer. Each combination of
design and probe count was attempted 200 times to show
trends. Scripts record any errors produced during the steps
as well as completion time in the case of success. A total of
8,400 experiments were conducted.

V. EXPERIMENTAL RESULTS

Results from the three benchmark designs tested are
summarized in Figures 2, 3, and 4. As shown, regardless
of design size, the SRL-based debug tool was able to probe
a significantly higher number of design nets than Xilinx’s
ILA tool. In addition to enabling debug at high design
densities, insertion of the SRL-based debug logic was far
faster than ILA insertion (see Table I). No results are shown
for instrumentation time of the ILA in a 90% utilized design,
since none of those experiments were successful.

For each successful experiment, regardless of design uti-
lization, the SRL-based approach was able to place and route
probes in the design without disturbing the placement of the
user design in a fast, incremental fashion1. In addition, no
BRAMs were consumed. If these dense designs required the
use of all BRAMs available on the chip our SRL-based debug
tool could still be used to capture and view signal values.

VI. FUTURE WORK

Future work may include: 1) studying timing impacts
caused by the instrumentation process, 2) designing im-
proved triggering methods, 3) applying this tool to additional
benchmark circuits, and 4) providing deeper, variable-length
SRL-based trace buffers.

VII. CONCLUSION

We have presented an SRL-based FPGA debug tool that is
capable of leveraging very small amounts of leftover logic
resources in highly utilized designs. This paper presents a
basic proof-of-concept of its ability to act as a fully triggered
debugging tool as well as the feasibility of probing a number
of nets even in designs that utilized up to 90% of the FPGA.
Though the SRL-based trace buffers are relatively small

1Use of incremental techniques with the ILA did not reduce place and
route time.

relative to an ILA, for example, they are able to provide
observability when ILA-based techniques are infeasible.

REFERENCES

[1] Certus debug suite. https://www.tek.com/sites/default/
files/media/media/resources/54W_28030_0.pdf. Ac-
cessed: 11.17.2017.

[2] Quartus ii handbook volume ii. https://www.altera.
com/content/dam/altera-www/global/en_US/pdfs/
literature/hb/qts/archives/quartusii_handbook_
archive_11.0.pdf. Accessed: 11.17.2017.

[3] Vivado design suite tutorial, programming and de-
bugging. https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2017_4/
ug936-vivado-tutorial-programming-debugging.
pdf. Accessed: 1.26.2018.

[4] F. Eslami and S. J. E. Wilton. Incremental distributed trigger insertion
for efficient fpga debug. In 2014 24th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–4, Sept
2014.

[5] E. Hung and S. J. E. Wilton. Speculative debug insertion for fpgas.
In 2011 21st International Conference on Field Programmable Logic
and Applications, pages 524–531, Sept 2011.

[6] E. Hung and S. J. E. Wilton. Limitations of incremental signal-
tracing for fpga debug. In 22nd International Conference on Field
Programmable Logic and Applications (FPL), pages 49–56, Aug 2012.

[7] E. Hung and S. J. E. Wilton. Incremental trace-buffer insertion for
fpga debug. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(4):850–863, April 2014.

[8] Eddie Hung, Jeffrey B. Goeders, and Steven J. E. Wilton. Faster FPGA
Debug: Efficiently Coupling Trace Instruments with User Circuitry,
pages 73–84. Springer International Publishing, Cham, 2014.

[9] Eddie Hung and Steven J.E. Wilton. Towards simulator-like observ-
ability for fpgas: A virtual overlay network for trace-buffers. In
Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’13, pages 19–28, New York, NY,
USA, 2013. ACM.

[10] B. L. Hutchings and J. Keeley. Rapid post-map insertion of embed-
ded logic analyzers for xilinx fpgas. In 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines, pages 72–79, May 2014.

[11] Yousef Iskander, Cameron Patterson, and Stephen Craven. High-level
abstractions and modular debugging for fpga design validation. ACM
Trans. Reconfigurable Technol. Syst., 7(1):2:1–2:22, February 2014.

[12] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings. Rapidsmith: Do-it-yourself cad tools for xilinx fpgas.
In 2011 21st International Conference on Field Programmable Logic
and Applications, pages 349–355, Sept 2011.

[13] Chris Lavin and Alireza Kaviani. Rapidwright: Enabling custom
crafted implementations for fpgas. In IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines,
page to appear, 2018.

[14] Yale N. Patt and Sanjay Patel. Introduction to Computing Systems:
From Bits and Gates to C and Beyond. Osborne/McGraw-Hill,
Berkeley, CA, USA, 1st edition, 2000.

[15] Pankaj Shanker. Spatial debug &#38; debug without re-programming
in fpgas: On-chip debugging in fpgas. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’16, pages 3–3, New York, NY, USA, 2016. ACM.

[16] Timothy Wheeler, Paul Graham, Brent Nelson, and Brad Hutchings.
Using Design-Level Scan to Improve FPGA Design Observability and
Controllability for Functional Verification, pages 483–492. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[17] S. J. E. Wilton, B. R. Quinton, and E. Hung. Rapid rtl-based signal
ranking for fpga prototyping. In 2012 International Conference on
Field-Programmable Technology, pages 1–7, Dec 2012.


