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Abstract—FPGA becomes a popular technology for imple-
menting Convolutional Neural Network (CNN) in recent years.
Most CNN applications on FPGA are domain-specific, e.g.,
detecting objects from specific categories, in which commonly-
used CNN models pre-trained on general datasets may not be
efficient enough. This paper presents TuRF, an end-to-end CNN
acceleration framework to efficiently deploy domain-specific ap-
plications on FPGA by transfer learning that adapts pre-trained
models to specific domains, replacing standard convolution layers
with efficient convolution blocks, and applying layer fusion to
enhance hardware design performance. We evaluate TuRF by
deploying a pre-trained VGG-16 model for a domain-specific
image recognition task onto a Stratix V FPGA. Results show
that designs generated by TuRF achieve better performance than
prior methods for the original VGG-16 and ResNet-50 models,
while for the optimised VGG-16 model TuRF designs are more
accurate and easier to process.

I. INTRODUCTION

There has been much recent work on developing FPGA
implementations of Convolutional Neural Networks (CNNs).
While significant progress has been made in optimising the
inference process of general CNN models on FPGAs, training
and optimising CNNs for various domain-specific applications
remain a demanding task. CNN models for domain-specific ap-
plications only need to detect or classify objects from a narrow
range of classes. Recent discovery in transfer learning [1] —
a research topic focusing on exploiting features reusable from
one task to another — shows that CNN models that are pre-
trained on general datasets can be efficiently fine-tuned [2]
for specific domains. This approach works well for medical
image analysis: a pre-trained CNN with adequate fine-tuning
can outperform or perform as well as training from scratch [3].

While the transfer learning approach is promising, the chal-
lenge is to exploit it for domain-specific applications on FPGA,
where efficient processing is vital. For tasks in a specific
domain, standard convolution layers dedicated to extracting
general features are over-parameterised and can be replaced by
efficient convolution blocks, which consist of multiple small
convolution layers with much fewer parameters. Example
blocks are bottleneck [4], depthwise separable [5], and separa-
ble bottleneck [6]. They can reduce computational redundancy
while maintaining a satisfactory accuracy. Meanwhile, since a
layer-replaced model normally can be easily fine-tuned, the
cost of layer replacement is minor. However, they are rarely
explored and implemented in any of the previous work on
FPGA acceleration of CNNs.
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This paper proposes TuRF, a novel framework that generates
efficient CNN models on FPGA for domain-specific applica-
tions (Fig. 1). TuRF accepts a CNN model pre-trained from a
large-scale dataset, replaces its selected standard convolution
layers with various convolution blocks, fine-tunes and evalu-
ates the layer-replaced model, and outputs an efficient FPGA
design in the end. To efficiently process convolution blocks,
TuRF generates FPGA designs that fuse their inner convolution
layers. The major contributions are as follows:
1) A design template that supports efficient CNN models

and convolution blocks with Winograd [7], and also layer
fusion optimisation (Section III and IV).

2) Characterisation of the design space of CNN model re-
garding domain-specific applications and a transfer learn-
ing inspired layer-wise optimisation that replaces standard
convolution layers by blocks with fine-tuning (Section V).

3) Evaluation of our framework with flower classification [2],
a domain-specific application for transfer learning evalua-
tion. Results show that on Stratix V 5GSD8, our frame-
work can generate both efficient hardware and better CNN
models for a given application (Section VI).

II. MOTIVATIONS AND BACKGROUND

Implementing CNN onto FPGA for domain-specific appli-
cations is challenging. Most of the previous efforts focus on
data quantisation and binarisation [8], [9], arithmetic transfor-
mations [10], or exploiting model sparsity with pruning [11].
However, it is difficult to apply these methods from a domain-
specific perspective because their evaluations and results are
based on specific CNN models, and are not guaranteed to be
reproducible using other models. Also, no clear correlation



between accuracy and data representation or sparsity has been
discovered yet. Finally, a sparse CNN model is much harder
to process on FPGA and different sparsity patterns can result
in very different performance.

The motivation of the proposed framework rests on the
recent trend in efficient CNN architecture design [4]–[6].
Essentially, the redundancy in CNN is sometimes architectural
and can be reduced by modifying the standard convolution
layer with efficient convolution blocks as shown in Fig. 2.
A convolution block is a set of convolution layers that ex-
tracts features as a whole. More importantly, a convolution
block generally consumes fewer resources than its equivalent
standard convolution layer. Compared to quantisation and
pruning which rely on statistical properties of pre-trained
CNN models, this approach is more generic and has been
evaluated for different domain-specific applications, as shown
in [5]. It is one of the major tasks for TuRF to explore
the optimisation opportunity of switching from convolution
layers to blocks. Nevertheless, there is no dedicated FPGA
implementation for convolution blocks, and therefore, TuRF
also aims at accelerating CNN for domain-specific applications
by exploring the FPGA implementation of convolution blocks.

A. Convolution Layer and Convolution Block

A convolution layer correlates an input feature map D and a
filter G together. Suppose D is an image with C channels and
spatial dimensions H ×W , and G is a 4D filter that consists
of F output channels, C input channels, and kernels of size
K ×K, the resulting feature map Y is defined as (1), where
∗ is the spatial convolution operator.

Yf =

C∑
c=1

Dc ∗Gf,c

Yf,x,y =

C∑
c=1

K∑
h=1

K∑
w=1

Dc,x+h,y+w ×Gf,c,h,w

(1)

A standard convolution layer can be replaced by convolution
block to improve efficiency. There are basically four types:

1) Stacked Block: It simply stacks two standard convolution
layers together and reduces the number of channels. Its input
and output are connected by a shortcut connection. Please refer
to the model ResNet-34 [4] for more details.

2) Depthwise Separable: It is proposed in [5], [12], [13],
where the spatial and cross-channel correlation is studied
separately using depthwise and pointwise convolution re-
spectively. The depthwise convolution only performs spatial
convolution in each channel of the input feature map, and
the pointwise convolution is a special case of the standard
convolution by setting K to 1. Assume that Ĝ is the 3D
depthwise filter and G is the 2D pointwise filter, (2) defines
the depthwise separable convolution layer as described in [5].

Yf,x,y =

C∑
c=1

(
Dc ∗ Ĝc

)
×Gf,c (2)

3) Bottleneck Block: A recent trend of constructing CNN
is the prevailing use of bottleneck block as demonstrated
in ResNet-50 [4] which is economical and easy-to-train for
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Fig. 2. Efficient convolution blocks that aim at improving the efficiency.

deeper networks. A bottleneck block consists of a stack of
1 × 1, 3 × 3, and 1 × 1 convolution layers, in which the
first and last one reduce and increase the number of channels
respectively. The input of the bottleneck block is connected
to the output of the previous stack where there also exists a
residual connection performing element-wise addition.

4) Separable Bottleneck: Evolved from the original bot-
tleneck block, linear bottleneck is proposed and used in
MobileNet V2 [6] for efficiency improvement. Compared to
the original, the middle bottleneck convolution is replaced
with its depthwise version and the activation layer is removed
after the last convolution, so as to combine the efficiency of
depthwise separable with the effectiveness of bottleneck block.

B. Winograd Algorithm

As an arithmetic optimisation method dated back to 1980s,
the Winograd’s minimal filtering algorithm [14] is still proven
to be powerful in optimising convolution layer processing
based on recent research [7]. An instance of 2D Winograd
algorithm, denoted by F (m ×m, r × r) where m is the 2D
tile size and r is the filter kernel size, can be formulated as (3),

Y = AT
[ [

GgGT
]
�
[
BTdB

] ]
A = ATXA (3)

where � is the Hadamard product. G, B, A are three transfor-
mation matrices with (m+r−1)×r, (m+r−1)×(m+r−1),
(m + r − 1) × m in shape. g is an r2 filter kernel and d
with the size (m + r − 1) × (m + r − 1) is a tile of the
input feature map. A widely used configuration is F (42, 32),
and compared to standard convolution with 4232 = 144
multiplications to produce 16 output elements, 2D Winograd
based convolution reduces the computation complexity to
62 = 36 multiplications, which is equivalent to 144/36 = 4x
speed-up. For details about the Winograd Algorithm, please
refer to [7].

The utilisation of Winograd for CNN acceleration on FPGA
is discussed in [10], [15]–[17]. F (42, 32) is applied in [10],
[15] and F (22, 32) in [16], [17]. F (42, 32) can achieve higher
speed-up, but it contains constant factors that are not 2n. In
the following discussion, we use F (42, 32) but our approach
can be configured to support F (22, 32).

C. Efficient CNN Models

In this paper, we mainly study three efficient CNN models:
ResNet-50 [4], MobileNet V1 [5] and V2 [6], to gain research
insight for our hardware template and to make a comparison
to our generated CNN model for domain-specific application.
Default configurations are used for these networks. As shown
in Fig. 3, convolution blocks are responsible for most of the
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Fig. 3. A comparison of the number of parameters (left) and operations (right)
within the convolution block, single convolution layer and FC layer between
three efficient CNN models. Convolution blocks are dominating.

TABLE I. CNN MODELS STATISTICS.

Model Block1 Ops (GOPS) Params (M) Top-1 (%)
VGG-16 — 30.95 138.3 71.5

ResNet-50 (c) 7.72 24.3 75.2
MobileNetV1 (b) 1.14 4.01 70.9
MobileNetV2 (d) 0.61 3.31 71.9
1 (b), (c), (d) are symbols that denote convolution blocks in Fig. 2.

operations and parameters. These models are also compared
to VGG-16 [18] as shown in Table I. ImageNet top-1 accuracy
of each model is listed in the same table as well.

III. HARDWARE DESIGN TEMPLATE

TuRF proposes the use of a scalable hardware design
template as a fundamental component in our framework. The
template enables generation of optimised CNN hardware by
supporting various convolution types. Particularly, the con-
volutional blocks discussed in Section II are the primary
research focus in our template development process. Winograd
transformation is also used to accelerate spatial convolution.

A. Design Template Overview

Our design template can be configured to support all the
layers utilised in recent efficient CNN models. We focus on
convolution layer and convolution blocks, which are the most
time-consuming parts in these models. An accelerator for
convolution layer or block can be constructed by basic building
modules in our template. Each module can be configured
regarding the level of parallelism or computation sequence.
Our design is by default implemented with fixed-point repre-
sentation, and its configuration is decided by the data range.

Similar to [19], a design module is described as a tuple
〈cfg , in, out〉 in which cfg is a set of module configuration
and in, out specify the width of input and output streams
respectively. The module configurations can be described with:

1) Tile shape: Th, Tw, Tc denote the height, width, and chan-
nels of the input and Tf represents the output channels.

2) Level of parallelism: Pc, Pf , Ph, Pw represent the number
of elements to process in parallel along the input and
output channels, height, and width axis.

3) Layer specifics: K denotes the kernel size and r men-
tioned in Section II is replaced by K.

B. Basic Building Modules

1) Line Buffer: Given by (4), it is a module that creates
sliding windows over an input feature map. We use K ′ to

denote either convolution kernel size K or the Winograd input
tile size (m+K−1). This module is implemented using shift
registers organised into K ′ rows.
〈{Pc, Ph, Pw}, PcPhPw, (K

′ + Ph − 1)(K ′ + Pw − 1)〉 (4)

2) Input and Output Buffers: Buffers are implemented as
on-chip memory to exploit the locality of the computation. An
input buffer caches input feature map to be reused throughout
the computation, and an output buffer stores and accumulates
temporary results. See (5) and (6) for descriptions.

〈{Pc, Pw}, Pc × Pw, Pc × Pw〉 (5)
〈{Pf , Pw}, Pf × Pw, Pf × Pw〉 (6)

3) Winograd Transformation: The Winograd algorithm is
applied to standard and depthwise convolution to reduce the
computation complexity. According to (3), three transforma-
tion modules are required to process a Winograd convolution.
Let Tk be the Winograd tile size (m + K − 1), (7), (8), (9)
illustrate the configurations and interfaces of the transforma-
tion modules for input feature map BTdB, weights GdGT,
and output ATXA respectively. Each transformation consists
of two multiplications between an input and a constant matrix,
which are implemented with either multipliers with LUTs or
shift operators (for 2n constants) to save resources.

〈{Pc,K}, PcT
2
k , PcT

2
k 〉 (7)

〈{Pc, Pf ,K}, PcPfK
2, PcPfT

2
k 〉 (8)

〈{Pc, Pf ,K}, PcPfT
2
k , PcPfm

2〉 (9)

4) Arithmetic Module: Most of the arithmetic computations
in a typical CNN workload is dot-product, which is employed
in the spatial and cross-channel convolution and also in the
fully-connected (FC) layers. Each dot-product module consists
of an array of multipliers followed by an adder tree. The
dot-product modules are further organised into a higher-level
array for parallelisation. This module can be shared among
convolution and FC layers when necessary.

5) Other Design Modules: An element-wise addition mod-
ule performs addition of two identically sized feature maps. An
activation module implements non-linear activation functions.
A normalisation module normalises its input by Batch Nor-
malisation. We omit details about these modules because they
are simple and have limited impact on the overall performance.

C. Implementation of a Single Layer

An accelerator can be constructed from building modules
to perform the computation, which can only perform the
computation of one layer at one time, in contrast to the fused
layer design (Section IV). Fig. 4 shows the system diagram
when a single layer is implemented. It can support different
types of convolution such as depthwise or pointwise and fully-
connected layers by efficiently sharing dot-products in the
arithmetic module. Modules are connected using data-flow
streams with the same input and output width. Outputs from
building modules should be consumed immediately to avoid
congestion. A global state controller together with counters
are utilised for each design to assign addresses for buffers
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and to enable/disable read/write actions and control data-flow
directions. Multiplexers are implicitly inserted between the
columns in the figure to control computation. The arithmetic
module is shared by convolution with or without Winograd
transformation, and fully-connected layer.

The computation sequence of convolution, which is a per-
mutation of interchangeable nested loops indices (f, c, i) based
on (1), has a large impact on the architectural structure. The
impact of such permutation for individual convolution layer
has been extensively studied in recent research studies [20],
[21]. Therefore, we only discuss two computation sequences,
filter-major (f, c, i) and channel-major (c, f, i), and present
their impacts on buffer sizes and pipeline in the rest of this
paper. The size of the buffer for the major index is linear to
its parallel factor. For example, the output buffer, which is
iterated with the f index, is of size PfHW and is linear to
Pf . The pipeline behaviour between two adjacent layers can
be different if their computation sequences are configured in
different ways (6). Further discussions in the next section.

IV. FUSED CONVOLUTION BLOCKS

Convolution blocks consume most of the operations accord-
ing to Fig. 3 and should be well-optimised for performance
improvement according to Amdahl’s law. Similar to the previ-
ous work [22], a baseline accelerator for the convolution block
is mainly based on a layer-by-layer execution. This approach
incurs significant off-chip data transfer and consequently can-
not fully exploit the potential of pipelining CNN layers.

To overcome this drawback, we propose a fused accelerator
for the convolution block that enables the computation of all
layers to complete in one launch. The benefits of layer fusion
are explained by the roofline model [23] and Fig. 5 illustrates
the possible benefits from layer fusion in different convolution
blocks. We extend the analysis from [10] by adding compu-
tational roofs for three convolution blocks. We have to note
that the bandwidth of the evaluation system (Maxeler MPC-X
Node) is so large that only depthwise separable blocks can take
advantage of layer fusion. However, all convolution blocks
can benefit from layer fusion if the bandwidth is decreased
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Fig. 5. We use the roofline model to evaluate the benefits of layer fusion for
different convolution blocks. The baseline is marked in black colour and the
fused design is marked blue colour. The target FPGA is Stratix-V 5SGSD8
on Maxeler MPC-X node.

to 16 GB/s or smaller which is common for commonality
FPGA devices.

The idea of layer fusion is inspired by [24], [25]. These
works only fuse the standard convolution with uniform kernel
size and target high-end FPGAs. Yet layer fusion is more
difficult in our case because there are other convolution
variants, and FPGAs do not always have sufficient resources to
fully place the fused block. Basically, we improve the previous
approaches to address the following new challenges:
1) The fusion method can support various convolution types.
2) There are many options to explore when the layers are

fused, such as buffer size and computation sequence.
3) Tiling must be considered to support small FPGAs.

A. Fusion Method for General Layer

We propose a method that can generate the fused design for
typical convolution blocks automatically using the following
steps. 1) The hardware implementation of convolution layer
is selected layer by layer. 2) The input and output buffers
between adjacent layers are combined. 3) The final configura-
tions are aggregated and decided by the predicted latency.

The first step can be easily implemented because our design
template can support convolution types in any known blocks.
In the second step, we decide the buffer usage between two ad-
jacent layers by the layer types and performance requirements.
If two adjacent layers are standard and pointwise convolution,
the use of a single buffer can minimise the area cost but may
incur stalling of the entire pipeline, as the previous layer can
only write into the buffer when the subsequent layer finishes
the computation. Doubling the buffer can eliminate this issue
with the increase of the area cost.

The third step determines the final configurations of the
fused accelerator which includes: the level of parallelism,
buffer sizes, and computation sequences. Suppose there are
N layers in a given module. Let 〈P i

h, P
i
w, P

i
c , P

i
f 〉 be the par-

allelisation parameters of layer i. To represent the computation
sequences, we use Seqi ∈ {FM, CM} to denote whether layer i
is filter-major FM or channel-major CM.



TABLE II. BUFFER SIZES UNDER DIFFERENT CONFIGURATIONS.
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Fig. 6. Two example pipelines of a fused design with different sequences
for a stacked block: 〈FM, CM〉 and 〈CM, CM〉. Each rectangler box represents a
complete execution of a tile. Double buffering is applied in (a).

1) Parallelisation Parameters: The parameters of a fused
design should satisfy constraints in (10), which ensures the
widths between all the input and output ports along the
design modules are the same. Derived from (10), paralleli-
sation parameters of a fused design can be simplified as
〈Ph, Pw, P

1
c , P

2
c , . . . , P

N
c , Pf 〉.

∀i ∈ {2, . . . , N} P i
h = P i−1

h ∧P i
w = P i−1

w ∧P i
c = P i−1

f (10)

2) Buffer Size: The size of a buffer depends on the sequence
of layers that it connects to. The first input and the last output
buffers are similar to the ones in Section III-B, while other
intermediate buffers are more complicated to analyse. The size
of buffer Bi, which is connected to layer Li−1 and Li, depends
on Seqi−1, Seqi, and the following options: 1) the same size
as the buffer in Li input or Li−1 output; 2) double buffering
to avoid stalling of the pipeline.

Table II lists the size of the intermediate buffer Bi under
different configurations. The first column is the sequence of the
two layers connected using a buffer. Double buffering is only
applied when it is indeed beneficial for improving the pipeline
performance. A configuration is inefficient if the buffer is too
small to store the required input or output.

3) Computation Sequence and Pipeline: The fused design
is a streaming architecture and the computation of all layers are
pipelined. We notice that computation sequence of each layer
can affect the pipelining as illustrated in Fig. 6. 〈FM, CM〉 has a
lower latency than 〈CM, CM〉 (used in [25]) since the first output
finalised by layer 1 can be immediately consumed by layer 2.
For more complicated cases, we implement a cycle-accurate
simulator to obtain all combinations of computation sequences
and evaluate their latency. Apart from latency, we also consider
buffer sizes since they are affected by computation sequences
as shown in Table II and Fig. 7 shows the exploration result
for the bottleneck and stacked blocks.

4) Tiling: A convolution block can be tiled into smaller
pieces when the on-chip resources are limited. Specifically,
for a convolution block with N layers, a tile can be defined
as 〈Th, Tw, T

1
c , . . . , T

N
c , Tf 〉. Unlike tiling a convolution layer

which mainly introduces an off-chip transfer overhead, tiling
a convolution block can incur much redundant computation
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as well. Therefore, tiling configurations should be carefully
explored to avoid such cases.

B. Design Space Exploration

When the previously discussed configurations are combined,
we can characterise the hardware design space of a convo-
lution block by 〈Th, Tw, {T i

c}, Tf , Ph, Pw, {P i
c}, Pf , {Seqi}〉.

Winograd based design is used by default. The performance
and area cost are evaluated in two steps: a cycle-accurate
simulator is used to find the best computation sequence and its
latency, and the latency can provide the performance numbers;
and the resource consumption can be computed by a linear
prediction model built upon synthesised designs. Finally, the
roofline model is used to find the best design under resource
constraints. Fig. 8 presents the exploration results for three
efficient CNN models and a baseline VGG-16 model using our
hardware template. We notice that the performance in GOPs
for the efficient models is generally smaller. However, fewer
operations are also required for these networks, and hence the
overall inference time is still shorter (Section VI).



TABLE III. EVALUATION OF EFFICIENT CNN MODELS AND DIFFERENT VGG-16 VARIANTS ON STRATIX V.

Efficient CNN Models VGG-16 Variants1

ResNet-50 MobileNet V1 MobileNet V2 VGG-16 VGG-16 (1) VGG-16 (2) VGG-16 (5)
# Ops (GOP) 7.74 1.14 0.611 30.95 26.29 19.36 3.82
# Param. (M) 25.5 4.21 3.47 138.3 132.1 129.83 125.3
Clock Freq. (MHz) 200 200 200 200 200 200 200
Bit width 16 bit 16 bit 16 bit 16 bit 16 bit 16 bit 16 bit
DSP usage 1680 1664 1856 1738 1872 1536 1680
Latency (ms) 7.95 0.884 1.02 14.5 10.3 9.65 8.42
Throughput (GOPS) 973.2 1287.2 592 1928.4 2561.5 2007.0 453.6
Top-1 Accuracy 93.5 88.3 87.5 90.5 93.5 92.75 84.75
1 The n in VGG-16 (n) denotes a VGG-16 variant that has n number of layers replaced by depthwise separable convolution.

V. LAYER-WISE MODEL OPTIMISATION

The objective of TuRF is to find an efficient CNN model
and its corresponding design on FPGA for a given domain-
specific application. Section III and IV discuss how to map
efficient CNN models on FPGA designs. Moreover, in this
section, we look into the design space exploration of CNN
model, which is inspired by transfer learning for layer-wise
optimisation, and the final tool-flow for TuRF.

A. CNN Model Selection and Optimisation

CNN model optimisation is about searching for the most
efficient network under pre-defined accuracy requirements. If
the hardware factor is put aside for now, we can define model
efficiency as the number of parameters and operations required
to achieve a certain accuracy, and the remaining challenges are
the characterisation and exploration of the model design space.

1) Model Design Space: A typical CNN model is a se-
quence of cascading layers with convolution layers. To restrict
the scale of the design space, we only explore models that are
grown from either VGG-16 or ResNet-50. To further limit
the design space for feasible exploration, a model originated
from VGG-16 or ResNet-50 can have its convolution layers
replaced only by a particular separable convolution block
as shown in (11). Such replacements are also the partial
motivation for the design of MobileNet. We represent a model
in our design space as 〈M,L1, . . . , LN 〉, in which M ∈
{VGG-16, ResNet-50} is the base model with N convolution
layers and Li ∈ {ORIGIN, SEPARABLE} indicates replacement.

standard convolution −→ depthwise separable block

bottleneck block −→ separable bottleneck block
(11)

2) Exploration Method: In most cases we do not have a
sufficient budget for training every possible model. Therefore,
we devise the following optimisation approach, inspired by the
principles of transfer learning. The input to our exploration
procedure can be any models pre-trained based on ImageNet,
which supposedly is general and consists of removable re-
dundancies regarding the targeting application. We intend to
achieve the required accuracy by fine-tuning the input model,
in which only top layers are trained and others are fixed. We
also assume that replacing top convolution layers are more
beneficial than bottom ones. This is based on [26] explaining
the mechanism of CNN for computer vision, that convolution
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Fig. 9. (a) evaluates of accuracy by the number of replaced groups in VGG-
16, and (b) presents the impact of replacement positions.

layers closer to the bottom extract lower-level features such
as edges and shapes, and those closer to the top understand
the higher-level features such as faces and eyes. Hence, our
assumption is mostly valid because the model is now focusing
high-level domain knowledge.

As such, we propose a heuristic, greedy algorithm to explore
model design space. It starts with a pre-trained model and tries
to replace layers from the top. In each iteration, this algorithm
fine-tunes the model candidate for a fixed number of steps. The
procedure terminates once the algorithm fails to satisfy the
accuracy requirement. Note that when the budget is sufficient,
we need not stop and can continue searching.

3) Evaluation: We evaluate our method on a flowers classi-
fication problem [2] where the original model is a pre-trained
VGG-16. The convolution layers in VGG-16 are replaced by
their groups in this case. Figure 9 presents the evaluation
results in two aspects. The left figure shows the final explo-
ration results: each point illustrates the accuracy and size of
an explored model, and the most efficient model is the one
with the top convolution group replaced (the second point
from left), which is even better than the one with no layer
replacement (the leftmost point). Layers are consecutively
replaced from top to bottom. The right figure evaluates our
assumption that replacing the top convolution layers is more
beneficial than the bottom ones. In the figure, a replaced group
is closer to the top if its ID is bigger. The rightmost column
with the topmost group replaced achieves almost the same
top-1 accuracy as the baseline model. This evaluation is a
proof-of-concept. We will further evaluate this approach for
other models and applications in future work.



Algorithm 1 Pseudocode of the proposed framework.
1: procedure FRAMEWORK(D, R, P , M)
2: m← MODELGEN(M) . Initial model m
3: m∗, p∗ ← m, 0 . Initialise record
4: while VALID(m) ∧ ACC(m) ≥ Racc do . Check model accuracy
5: d← DESIGNGEN(m,P) . Optimised design d
6: p← PERF(d, m, P) . Evaluate performance
7: if p ≥ Rperf ∧ p > p∗ then
8: m∗, p∗ ← m, p . Update the best record
9: end if

10: m← MODELGEN(M, m, p) . Next model
11: end while
12: end procedure
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Fig. 10. (a) visualises explored models and (b) shows the improvement of
layer fusion on efficient CNN models. The size of a point in (a) shows its
relative model size.

B. Final Toolflow

Combining the model optimisation procedure described and
the hardware optimisation and generation method in Sec-
tion III and Section IV, we can deduce the final toolflow for
our framework as illustrated in Algorithm 1. This algorithm
can jointly explore the design space of CNN model and
hardware for efficient inference.

Given D is the domain-specific dataset, R are requirements,
P is platform specification, and M are pre-trained models.
This algorithm is driven by the MODELGEN procedure in
line 10, which can generate new models from pre-trained
models and information from the current iteration, such as the
performance p of the intermediate model m. Basically, DE-
SIGNGEN automatically explores the hardware design space
regarding m and P and generates an optimised design d. This
design is then evaluated to get performance metrics p. The
best record is updated if the p is better than the performance
requirement Rperf and the current best p∗. The algorithm
terminates when the accuracy is worse than the accuracy
requirement Racc. In case we have sufficient training budget,
we can loosen the terminating condition in line 4 by removing
the accuracy requirement and checking the accuracy until all
possible models are searched.

VI. EVALUATION

In this evaluation, we look at the capability of TuRF by
generating hardware design for typical efficient CNN models.
Then, we evaluate TuRF in terms of model transformation and
optimisation by accepting conventional model VGG-16 pre-
trained based on a large dataset and generating a set of smaller

models with different number of groups replaced. Finally, we
compare our approach with previous work.

A. Experimental Setup

The domain-specific application that we select in this eval-
uation is the flowers classification problem [2] mentioned
above. The data representation in the generated hardware
designs is quantised to be 16 bit fixed-point, which does
not hurt the accuracy of the evaluated application. All the
CNN models evaluated here are built, trained and evaluated
using the latest TensorFlow (v1.6). Pre-trained models are
downloaded directly from TF-Slim. The experimental FPGA
platform is Stratix-V 5SGSD8 on a Maxeler MPC-X node,
which contains 262.4K adaptive logic modules (ALM), 1963
variable-precision DSP blocks, and 2567 BRAM (M20K).
The bandwidth of off-chip data transfer is 38 GB/s. The
hardware template prototype is implemented in OpenSPL [28].
MaxCompiler (v2016.1.1) synthesises generated designs.

B. Performance of Efficient CNN Models

We first evaluate the performance of three popular efficient
CNN models: ResNet-50, MobileNet V1 and V2 generated
by our framework and the results are shown in Table III.
Each model is fine-tuned to find the highest attainable top-1
accuracy for flower classification. From the table, ResNet-50
can achieve the best accuracy but it suffers from the worst
performance in latency. The network size is also substantially
larger when compared to the others. On the other hand,
MobileNet V1 is better than the V2 in terms of latency and
accuracy with just a minor increase in network size.

We also study the benefits of layer fusion for convolution
blocks by analysing the performance in GOPS. The layers
within the convolution block are fused in each efficient model.
Fig. 10 (b) compares performance, showing the fused de-
signs always outperform the implementations without layer
fusion. Layer fusion is particularly effective for MobileNet
V1, revealing that depthwise separable blocks can be fused
more effectively. It also explains the compelling performance
of MobileNet V1 as shown in Table III when compared to
the V2. Our framework allows users to choose which models
to use, based on their requirements. This involves a repeated
execution of the exploration procedure and the model with
higher satisfiability for the given requirements will be chosen.

C. Evaluation on Model Optimisation

A pre-trained VGG-16 is used as an input to our framework
so as to evaluate its capability to perform model optimisa-
tion. The accuracy requirement supplied to the framework is
gradually adjusted to generate implementations with different
number of groups replaced. This enables us to understand
the implications of replacing the standard convolution layer
with various types of convolution block in conventional CNN
model. Table III shows the results where VGG-16 (1), (2) and
(5) imply one, two and five groups are replaced respectively.
Essentially, VGG-16 (1) and (2) perform better than the
original model in flowers classification regarding the accuracy



TABLE IV. COMPARISON OF VGG-16 AND RESNET-50 PERFORMANCE WITH PRIOR WORKS

VGG-16 ResNet-50
[9] [27] [22] [10] [17] Ours [22] Ours (Plain) Ours (Fused)

Year 2016 2016 2017 2017 2018 2018 2017 2017 2018 2018
FPGA board ZC706 KU060 GX1150 ZCU102 VCU440 5GSD8 GXA7 GX1150 5GSD8 5GSD8
Tech. 28nm 20nm 20nm 16nm 16nm 28nm 28nm 20nm 28nm 28nm
Clock Freq. (MHz) 150 200 200 200 200 200 150 200 200 200
Bit width 16bit 16bit 16bit 16bit 16bit 16bit 16bit 16bit 16bit 16bit
Max DSP blocks 900 2760 1518 2520 2880 1963 256 1518 1963 1963
Perf. (GOPS) 137.0 266.0 720.2 2941 821.0 1928 250.75 619.13 890.5 973.2

and hardware efficiency. The VGG-16 (5) only showcases
minor performance gain with an enormous accuracy drop.

Furthermore, Fig. 10 (a) demonstrates the accuracy versus
the latency and size among all models. MobileNet is more
suitable for performance-aware applications while ResNet-50
and VGG-16 (2) are more appropriate for accuracy-aware
applications. Yet, the model size cannot drop significantly for
VGG-16 because most parameters are occupied by FC layers.

D. Comparison with Previous Work

To demonstrate the performance of our hardware template,
we make a comparison to prior works related to automatic
CNN accelerator generation on FPGA. The original pre-
trained CNN models, VGG-16 and ResNet-50, are used in this
experiment. The convolution layer of our VGG-16 accelerator
is not replaced by any convolution blocks to ensure a fair
comparison. The Winograd algorithm is applied to reduce the
computation complexity. Table IV shows that our approach is
better than most of the previous work and is still competitive
with [10] in the same technology. Our performance normalised
by 16 nm technology (3374 GOPS) is higher than [10] (2941
GOPS). Moreover, to show that layer fusion can be beneficial
for efficient convolution blocks, we evaluate our accelerator
on ResNet-50. As shown in Table IV, our implementations
outperform the ones given in [22], and the fused design
can achieve the finest performance. Here the plain design is
generated with only the Winograd algorithm, and the fused
design performs layer fusion for all bottleneck blocks.

VII. CONCLUSION

This paper proposes TuRF, a new CNN optimisation frame-
work inspired by efficient CNN architectures and transfer
learning, which supports domain-specific optimisations. The
novel aspects include a design template for various convolution
blocks, a layer fusion method, and a model optimisation
technique which allows layer replacement and fine-tuning
of pre-trained CNNs. The proposed approach is capable of
producing some of the fastest CNN designs targeting FPGA
implementations. Further research includes design space ex-
ploration with functional evaluation tools, such as ADAM [29],
and extending our approach to support various applications.
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