

Figure 1. Proposed single-package multi-chip integration of FPGA and

domain-specific ASIC accelerator tiles.

In-Package Domain-Specific ASICs for Intel® Stratix® 10 FPGAs:
A Case Study of Accelerating Deep Learning Using TensorTile ASIC

Eriko Nurvitadhi, Jeffrey J. Cook, Asit Mishra, Debbie Marr, Kevin Nealis, Philip Colangelo,
Andrew Ling, Davor Capalija, Utku Aydonat, Aravind Dasu, Sergey Shumarayev

Intel Corporation

Abstract— FPGAs or ASICs? FPGAs are extremely flexible
while ASICs offer top efficiency. We believe that FPGAs and
ASICs are better together, to offer flexibility and efficiency.
We propose single-package heterogeneous 2.5D integration
of FPGAs and ASICs, using Intel’s Embedded Multi-Die
Interconnect Bridge (EMIB). Since the ASICs are separate
chips from the FPGA, this approach (1) does not change
FPGA fabric, allowing re-use of existing ecosystems (FPGA
chips, packaging, boards, software), and (2) allows freedom
in ASIC design (area/freq/process/etc unconstrained by
FPGA fabric). Intel® Stratix® 10 FPGAs already have
EMIBs, enabling single-package integration with other
chips, or “tiles”. We propose leveraging them to mix-and-
match any domain-specific ASICs with Stratix10 FPGAs. In
particular, this work focuses on deep learning (DL) domain,
which demands efficient tensor (matrix/vector) operations.
We propose TensorTile ASICs for Stratix10 FPGAs to
provide ASIC-level tensor performance, while relying on
FPGA’s flexibility for application-specific operations (e.g.,
Winograd). Our evaluation shows: (1) a small TensorTile
offer much better tensor throughput than a large Stratix10-
2800 FPGA; (2) FPGAs and TensorTiles mix-and-match
provide scalable solutions (e.g., ~69 peak INT8 TOPs with
1xTensorTile+small Stratix10-400 FPGA, to ~194 peak FP16
TOPs with 6xTensorTiles+large Stratix10-2800); (3) AlexNet
performance (performance/Watt) of Intel’s DL FPGA design
improved by 4x (3.3x) when enhanced with 2xTensorTiles.

I. INTRODUCTION AND BACKGROUND

The problem: how to improve FPGA efficiency?
FPGAs are efficient programmable solutions. FPGA fabric
is very customizable, down to bit-level granularities, which
allows extracting various levels of parallelisms. As such,
FPGAs can be more efficient than other programmable
solutions (e.g., better than GPU in deep learning [5]).

However, FPGA fabric’s programmability comes at a
cost. For an application, an ASIC is an order of magnitude
more efficient than FPGA [2]. Nevertheless, an ASIC is
inflexible, as it only supports the specific function it is
designed for. Making an ASIC more general would require
adding more programmability to the ASIC design, leading
to inefficiencies. Hence, “general-purpose” programmable
ASIC is not always better than FPGA. Ideally, we want to
combine the best of FPGAs and custom ASIC accelerators.

Previous solution: “general-purpose” hard blocks in
FPGA fabric. Indeed, in an effort to achieve the best of
FPGAs and ASICs, existing state-of-the-art FPGAs
already integrate custom ASIC blocks (e.g., DSPs for math
operations) to improve FPGA efficiency (Figure 1a).
However, these ASIC blocks are integrated inside the
FPGA fabric. Hence, it necessitates modifications to the
FPGA fabric. Since an FPGA fabric architecture requires
tremendous effort to develop, it is typically used for the
entire FPGA product family of the same generation. So,
ASIC blocks integrated within FPGA fabric need to target

the general market for FPGAs. Moreover, the scope of the
ASIC blocks are limited since they need to comply with
FPGA fabric integration constraints (e.g., meet certain
delay, size, process technology, etc). Beyond the hardware,
the FPGA software tools also needs to be modified to
support targeting such modified FPGA fabric.

Proposal: Multi-Chip Integration of FPGAs and
ASICs as System-in-Package (SiP). We propose
synergistically composing FPGAs and domain-specific
ASICs, or “tiles”, as multi-chip system-in-package (SiP)
solutions (Figure 1b), using technologies such as [3][4][9].
This novel architecture paradigm offers FPGA flexibility
and ASIC efficiency. An application domain typically
contains operations that are shared across the domain and
specific to each application. Here, the domain-shared
operations are implemented on ASIC(s), while the
application-specific ones on FPGA(s). The ASICs and
FPGAs are integrated using technologies such as Intel’s
EMIB [3][4], resulting in improved performance and
efficiency over “FPGA only” solution, while being more
flexible/programmable than “ASIC only” solution.

Furthermore, this approach is extremely cost effective,
fast to develop, and scalable due to the following reasons.

(1) Re-use of collaterals (Software, Hardware). We are
not changing the FPGA fabric, but instead adding ASICs
next to the FPGA chip via efficient links, such as Intel
EMIB. So, existing FPGA ecosystems can be reused (e.g.,
FPGA chips, packaging, boards, software), which save
tremendously on costs and development time.

The Stratix 10 FPGA family is already made with
EMIB extensibility to provide SiP solutions [4]. It offers

TensorTile: Perform
tensor DL operations.

FPGA: application-specific DL logic (e.g., data
management, math transforms). Intel OpenCL DLA

is used in this paper.

TensorTile

offload

Figure2. TensorTile accelerates FPGA by delivering ASIC efficiency on
tensor (e.g., matrix/vector) operations. The figure shows a TensorTile on Intel
Stratix10 2800 FPGA accelerating Intel OpenCL Deep Learning solution [1].

FPGA developer uses TensorTile through a well-defined interface, in the
same manner as existing hard FPGA blocks. TensorTile can be used with any

FPGA design on any tensor applications (e.g., deep learning, wireless,
cognitive radio, etc). Different variants/number of tiles can be integrated to

offer scalable solutions (e.g., a small FPGA and 1 tile can offer 69 INT8

On ASIC: matrix/vector ops
at top efficiency

On FPGA: customizable
data mgt, act function,
math transforms, etc

HBM

FPGA

E
M
IB

EMIB

HBM

EMIB

Tensor Tile

E
M
IBXCVR

Tensor Tile

EMIB

Small
FPGA

Big
FPGA

More efficient,
smaller, but less

configurable

More configurable,
but less efficient

and bigger

(a) Case 1: getting top performance and
efficiency, while having extreme flexibility

to deploy customized DNN solutions

(b) Case 2: use the tile to free up FPGA
resources for other apps

Tensor
TileApp1

(DL)

App1
(DL)

E
M
IB

App2
(Network)

(c) Case 3: balancing between performance,
efficiency, and flexibility/configurability

Figure 3. Examples of integrating Stratix 10 FPGA with TensorTiles to offer

very versatile solutions across use cases.

myriad of options, from small to large FPGAs, with
different numbers of EMIB connections to different
“tiles”. Each FPGA in the family has at least an EMIB
link. These links utilize efficient interfaces (AIB, UIB) [4],
and offer data streaming with ~1 Tbps bandwidth.

(2) Scalability/versatility through customized solutions.
There is freedom of choice of ASIC tiles to use (e.g., a
library of already-available “off-the-shelf” tiles, or new
custom tiles). These tiles are not constrained by FPGA in-
fabric integration constraints. ASIC area, frequency, and
process, etc can be optimized flexibly (e.g., older process
for cost savings, or latest process for performance).

Current Stratix 10 FPGAs offer transceiver tiles. Here,
we propose domain-specific ASIC accelerator tiles. The
ability to mix-and-match any Stratix10 FPGA with set of
tiles leads to a versatile and scalable solutions (Figure 1c).
One can use a small FPGA with one tile (e.g., embedded),
or a large FPGA with 6 tiles (e.g., data centers). Generally,
arbitrary FPGAs and ASICs can be composed, resulting in
many possible integration options.

Deep Learning Case Study. This paper presents a
case study for the Deep Learning (DL) domain. DL is at
the forefront of Artificial Intelligence revolution. DL based
on Deep Neural Networks (DNN) heavily rely on tensor
computations (i.e., matrix/vector multiply/accumulate). To
this end, many have proposed accelerators for DL, based
on FPGAs [1][5][7][10][14][15], GPUs [13], and ASICs
[6]. They offer improved tensor processing. FPGA‘s fine-
grained spatial configurability can be especially appealing,
due to the need for extreme customizations in DNN
solutions (e.g., as elaborated in [5]). There are industry
trends to use FPGAs for DL, from data centers (Microsoft
Brainwave [7]) to automotive (Intel GOTM [8])
applications. Nevertheless, FPGA’s flexibility comes at a
cost. A fixed-function ASIC tensor accelerator may offer
top efficiency, but is less flexible than FPGAs. We propose
integrating FPGAs with DL accelerator ASICs.

TensorTile: Tensor ASIC Accelerator for Stratix
10. We present a novel ASIC tile, called TensorTile. It
complements FPGAs to execute commonly used tensor
operations in DNNs with ASIC-level efficiency. Stratix 10
enhanced with TensorTiles can flexibly implement
application/use-case specific customized DNN functions
on FPGAs (e.g., Winograd), while utilizing TensorTiles to

deliver optimal tensor performance. Figure 2 shows an
example Stratix 10 FPGA running Intel DL Accelerator
[1], offloading tensor operations to a TensorTile.

Our evaluation shows: (1) a small TensorTile (10s in
mm2, 14nm process) offer much better tensor throughput
than a large Stratix10-2800 FPGA; (2) FPGAs and
TensorTiles mix-and-match provide scalable solutions
(e.g., ~69 peak INT8 TOPs with 1xTensorTile+small
Stratix10-400 FPGA, to ~194 peak FP16 TOPs with
6xTensorTiles+large Stratix10-2800); (3) AlexNet
performance/Watt and performance of Intel’s DL OpenCL
Stratix10 FPGA [1] improved by 3.3x and 4x when
enhanced with 2x TensorTiles. Overall, this approach is
effective and scalable.

II. TENSOR-TILE: DEEP LEARNING ASIC

ACCELERATOR FOR STRATIX 10 FPGAS

A. TensorTile Overview

Given the growing importance of DL, this paper
proposes TensorTiles ASIC accelerators to complement
FPGAs to offer extremely efficient execution of key tensor
operations in DL. Unlike “ASIC-only” accelerators, our
design does not include support for all DNN operations,
since they are left for FPGA to handle. Unlike “FPGA-
only” accelerators, TensorTile ASIC gives major
efficiency improvements on tensor operations. It can be
used with any FPGA design for any tensor-heavy
applications (e.g., DL, wireless, cognitive radio, HPC, etc).

TensorTiles can be mixed and matched with a variety
of Stratix10 FPGAs to form scalable customized solutions.
Figure 3 shows several example use cases, such as
maximizing flexibility and efficiency (Figure 3a), freeing
up FPGA space to deploy more applications (Figure 3b),
and maximizing efficiency while maintaining sufficient
flexibility through the use of smaller FPGA (Figure 3c).

Using TensorTile. FPGA developer use TensorTile
through a well-defined interface, in the same way as using
existing FPGA components in Quartus library. Developers
access TensorTile(s) through Quartus library to be
included in their design. Note that any other new tiles (for
other domains) can be included in the same fashion.

Operations supported by TensorTile. TensorTile
supports key matrix/vector tensor multiply/accumulate
operations commonly used in deep learning domain. We
support low precision operations, including below 8-bit,
such as INT4. Very low precision DNNs have recently
been shown to deliver good accuracies (e.g., [11]).

Examples of operations suited for FPGA. On the

Figure 4. TensorTile Architecture. Overall architecture is shown in (a), PE
internal in (b), and Data Management Unit in (c). Then, (d) depicts an

example place & routed 4-PE design.

other hand, algorithm optimizations such as FFT and
Winograd transforms are good only for certain convolution
sizes and therefore is application-specific. Similarly, data
management from/to off-chip memory can be application
specific with different formats and/or data layouts (e.g.,
images vs. speech data). This type of application-specific
operations are better suited for FPGA.

B. TensorTile Interface and Architecture

Interface. TensorTile ASIC interfaces to the FPGA
chip in a prototypical fashion as existing external hard
blocks (e.g., PCIe), except connections are done via chip-
to-chip links (i.e., EMIB). The FPGA sends commands
and data to tell the ASIC what to do. The ASIC performs
the commands and provides results back to FPGA. An
FPGA designer interfaces with TensorTile by instantiating
a “wrapper” block via Quartus library, which connects to
the appropriate FPGA pins associated with the TensorTile.
Then, the FPGA designer could implement any desired
logic to command the ASIC, provide data to compute, and
consume the ASIC results. In particular, TensorTile uses a
multiple bi-directional streaming interfaces (s-ifcs), as
shown in Figure 4a. It can support a “fully unified mode”
where an FPGA application can use the entire TensorTile
through all the s-ifcs, or a “clustered mode” where the s-
ifcs are divided across multiple FPGA applications. (Each
application gets a portion of the TensorTile).

Architecture. TensorTile is based on a systolic array
of processing elements (PEs), as shown in Figure 4a. The
array is divided into multiple clusters, each connects to a
streaming interface (s-ifc). A cluster consists of a systolic
chain of PEs to perform computations, and a data
management unit (DMU) to transfer data between FPGA
chip, PEs, and neighboring cluster(s). As shown in Figure
4b, a PE contains dot product engines and a scratchpad to
feed them with PE-local data. It also contains feeder and
drainer blocks to receive input and send output. The DMU
also contains feeder and drainer blocks, as in Figure 4c.
Figure 4d shows a 14nm 4-PE design we placed/routed.

How it works. Input feature map (IFM) is convoluted
against filters to produce output feature map (OFM), and
computation for each filter is assigned to a PE. First, the
filters are loaded into each PE’s scratchpad. Then, IFM
blocks are streamed to the PEs. As the PEs receive the

IFMs, they perform dot product operation against the filter
in their scratchpads, and keep track of running sums. As
OFM elements are computed, they are drained from the
PEs into the FPGA via a chain of drainer blocks.

Extracting parallelism. To be able to extract various
levels of parallelism and scale to more PEs, we incorporate
reduction units in each drainer block. This facilitates
reducing partial sums within PEs, across PEs, and across
clusters. Consequently, it allows taking advantage of
multiple dimensions of parallelism.

Data reuse. To optimize reuse during convolution, the
feeder in DMU contains reuse buffer (R-buf in Figure 4c).
It keeps a block of IFM at DMU and re-uses it across
multiple convolution windows computed by PEs.

C. Example: Using TensorTile to Accelerate Intel FPGA
OpenCL Deep Learning Accelerator (DLA).

Even though TensorTile can be used with any FPGA
design, this paper evaluates TensorTile with Intel OpenCL
DL Accelerator (DLA) [1], as depicted in Figure 2. DLA
consists of components to move data between the FPGA
and off-chip memories, and to perform DNN functions
(Pool, Norm, ReLU, Winograd). It also has processing
elements (PEs) for tensor dot products. A sequencer unit
controls the overall execution of the architecture.

TensorTile(s) naturally extends the DLA architecture,
where PEs that are currently on FPGA can be (1) offloaded
to TensorTile to free up FPGA resources, or (2) augmented
by further tensor processing done by TensorTile.

In practice, other existing DL accelerators also rely on
dot product PEs for tensor processing (e.g., [7][10][15]).
Hence, TensorTiles can be used in similar fashion with any
of these existing FPGA DL accelerators.

TABLE I. EXPLORING THE DESIGN SPACE OF TENSORTILES, FOR

SMALL AREA (10S IN MM2) AND POWER (<15W) ON INTEL 14NM.
(*CLASS C IS OPTIMIZED FOR COMPUTE AND S FOR ON-CHIP STORAGE)

Data
Type

Tile
Class*

On-chip Storage
(MBs)

Performance
(TOP/s)

Efficiency
(TOP/s/W)

FP16 S 10 20.7 1.7
 C 7.3 30 2.6

INT8 S 11 46 3.5
 C 8.4 69 5.2

INT4 S 10.7 87 7
 C 8.4 138 10.4

III. EVALUATION

A. Tensor-Tile performance and efficiency

First, we explored TensorTiles design space to study
the range of peak performances and on-chip storage across
variety of tiles. There is large design space of FPGA/ASIC
integration because multiple EMIB-links can be connected
to arbitrary size chips. Here, we investigated small and
lightweight TensorTiles that target 10s in mm2 area with
<15 Watts of power. It is possible to scale up TensorTiles
(more area, power). Such study is left for future work.

Peak Performance and On-chip Storage. We studied
the TensorTiles in Table 1, with varying precisions (FP16-
INT4), compute throughput, and on-chip scratchpads
(SPADs). The optimal tile depends on target applications.
E.g., data-intensive RNNs may prefer more SPADs. We
implemented our designs in RTL and synthesized them to
14nm Intel process. As shown in Table 1, the tiles offer
wire range of performance (20-138 TOP/s).

(a) Peak performance for FP16 (b) Performance/Watt for FP16

TOP/sec TOP/sec/Watt

N/A

N/A

(c) Peak performance for INT8 (d) Performance/Watt for INT8

TOP/sec TOP/sec/Watt

N/A

N/A

(e) Peak performance for INT4 (f) Performance/Watt for INT4

TOP/sec TOP/sec/Watt

N/A

N/A

(g) Aggregate On-Chip Storage

MBs

Figure 5. Exploring the design space of Stratix 10 FPGAs with TensorTiles,

and comparison with FPGAs and GPUs.

Peak Performance and On-chip Storage of Stratix
10 FPGAs with TensorTiles. TensorTiles can be
integrated with any FPGA in Stratix 10 family. Figure 5
shows peak performance and performance/watt for several
possible combinations. Included are two FPGAs, large
Stratix 10 2800 and medium Stratix 10 2100 with HBMs.
We show baseline FPGA with no tile, with 1 tile, and with
maximum tiles (6 tiles for 2800 FPGA, 4 tiles for 2100
FPGA). The Stratix 10 FPGA performance baseline is
estimated using the method in [10]. We also include GPU
numbers, based on public information. Figure 5(g) shows
aggregate on-chip storage size in the system. TensorTiles
enhanced Stratix 10 solutions cover a wide range of
performance/watt, performance, and on-chip storage. For
example, a Stratix10 2800 and 6 tiles offer almost 200
FP16 TFLOPs of peak performance, surpassing the
NVIDIA VoltaTM GPU with TensorCores [12]. With the
versatility of our approach, one could choose optimal
combinations of FPGAs with number/types of tiles.

For inference, we focus on low-precisions DNNs. As
Figure 5 shows, the scaled up 2800 FPGA with 6 tiles can
go up to 851 TOP/s INT4 or 483 TOP/s INT8. On the
other end, even one tile and the smaller 2100 FPGA can
offer 83 TOP/s INT8 or 152 TOP/s INT4. One could also
choose to go even smaller for more constrained use case
(e.g., automotive, embedded). While not shown in the
figure, one could integrate a small Stratix 10 400 (378K
LEs) with a single TensorTile-C tile that can deliver ~69
INT8 peak TOPs and ~138 INT4 peak TOPs.

In overall, Performance/Watts are very compelling as
well. FPGAs are traditionally known to be power efficient
solution. The TensorTiles adds the capability to further
improve FPGA efficiency substantially, while offering
peak performance. In our study, each tile uses <15Watts,
and all tiles under study deliver on average ~4x more
tensor throughput than the large Stratix10 2800 FPGA.

Finally, on-chip storage offered by these tiles are non-
trivial. For applications that need large storage (e.g.,
persistent DNNs [7]), a 2800 FPGA with 6 tiles can offer
up to 88 MB aggregated on-chip RAMs to accommodate
large footprints needed by modern DNNs. As an example,
Figure 6 shows footprint of various Resnets (34 to 152
layers) for batch 1 to 8 commonly used in inference. Even
the deepest Resnet-152 with 8 batches can fit in the on-
chip storage of the 2800 FPGA with 6 TensorTiles.

B. Case study: Intel OpenCL Deep Learning Accelerator
(DLA) with TensorTiles

Second, we studied TensorTiles to accelerate Intel
OpenCL FPGA DL Accelerator (DLA) [1]. We compared
performance and efficiency of FPGA only, FPGA with
TensorTiles, and GPU. We target Stratix 10 2100 and 2800
FPGAs. In each, we studied configuration with 2 and 4
TensorTiles. DLA is modified to use TensorTiles (Figure
2) to perform the most demanding task (vector operations).
Other operations (e.g., off-chip data handling, Winograd)
are done in FPGA, taking advantage of FPGA’s flexibility.

We conducted two case studies, based on prior
published DLA work [1][10]. Using these “FPGA-only”
DLA baselines, we re-target their designs to use
TensorTiles. To scale up to multiple TensorTiles, we
instantiated multiple DLA instances (minus the PE array),
each one offloads tensor operations to its own TensorTile.

These studies show the benefits of FPGA flexibility. The
first study targets FP16 AlexNet with Local Response
Normalization and Winograd [1]. The second study targets
INT4 AlexNet with batch norm and no Winograd [10].

We considered TensorTiles from the previous sub-
section. For performance modeling, we used DLA
framework from [1], which was enhanced to model
TensorTile (e.g., FPGA and TensorTile ASIC links). The
framework also allows exploring design parameters, which
we used to find optimal configuration. We ended up with a
configuration based of TensorTile-S (~20TFLOP/s FP16).

Figure 7 shows the results of our case studies. For
comparison, we also include GPU results [12][13].
Averaging across two case studies, two TensorTiles offer

DNN footprint (MBs)

2800 FPGA with 6x TensorTile-S has
88.8 MBs on-chip storage, and can host
persistent deep networks (e.g., Resnets)

BatchSz

DNN

Volta GPU:
26MB on-

chip storage

Figure 6. Required on-chip storage sizes to make Resnets persistent, for

various depths (34-152) and batch sizes (1-8). The large on-chip storage of
2800 FPGA with 6xTensorTiles can accommodate all of these Resnet

configurations. In contrast, even the latest Volta GPU only has 26MB of on-
chip storage, and can only fit batch 1 configuration of Resnet 34 and 50.

(a) AlexNet performance

Thousand Images/sec

Images/sec/Watt

(b) AlexNet performance/watt

Figure 7. Alexnet Performance and Performance/Watt from case studies
using Stratix 10 FPGAs and TensorTiles. We also include published GPU

results [12][13]. The FP16 results are estimated based on published Resnet-
50 GPU results [12], scaled by the number of ops in Resnet-50/Alexnet. The

results are for max batch size within 7ms latency (noted as “b7ms”).

~3.8x and ~3.1x improvements in performance and
performance/watt relative to FPGA with no tiles. Four
TensorTiles increase these improvements to 7.6x and 5.3x.

Furthermore, going below 8-bit precision seems to be a
compelling solution. E.g., Stratix 10 2800 with 4 tiles with
INT4 precision can achieve 173K img/sec on AlexNet,
substantially higher than the GPUs (Figure 7(a)).

In comparison to GPUs, FPGAs with TensorTiles offer
not only better efficiency (performance/watt), but also
more versatility and scalability. For the important low-
batch inference, even Stratix 10 without TensorTiles are
already quite compelling relative to GPUs. The use of
TensorTiles offer further performance and efficiency. With
just 2 TensorTiles, Stratix 2100 and 2800 based solutions
provide better performance and efficiency than Titan X,
and comparable to Volta GPUs. Scaling to 4 tiles allows
surpassing Volta GPU’s performance and efficiency.

In overall, as latency-bound uses cases continues to
grow (e.g., [7]), FPGAs and/or FPGAs with TensorTiles
are more favorable than GPUs. For throughput oriented
use cases (with large batch size), FPGAs with TensorTiles
allow scaling up to beyond the peak throughput of GPUs.

IV. RELATED WORK

Existing FPGAs. Existing FPGAs have hard ASIC
blocks (e.g., DSPs for math) in their fabric. However,
changing FPGA fabric requires significant effort and costs.
The functionalities supported also has to be general-
purpose enough across FPGA market. The proposed
approach does not require any fabric modifications.

Non-FPGA accelerators. Compared to GPUs
[12][13], FPGAs are more flexible as it allows finer
grained programmability. Our approach improves the
existing FPGAs by adding domain-specific ASICs to them.

Compared to existing ASICs (e.g. [6]), our approach
leverages existing FPGAs for flexibility/programmability.
An “ASIC-only” solution is inflexible. A more general
ASIC with programmability can incur overheads in design
complexity, efficiencies, and effort/costs.

Deep Learning Accelerators. There are many existing
deep learning accelerators on ASIC, FPGA, and GPU (e.g.,
[1][5][6][7][8][10][12][13][14][15]). To our knowledge,
this paper is the first to synergistically combine FPGAs
and domain-specific ASICs through multi-chip integration.

V. CONCLUSIONS

We propose integration of FPGAs and domain-specific
ASICs in a single package, using Intel’s EMIB. This
approach does not require FPGA fabric modifications, and
can leverage Intel Stratix 10 FPGAs’ already built with
EMIBs. Specifically, we proposed TensorTiles ASICs to
complement FPGAs for DL applications. Evaluation
shows TensorTiles are very efficient and scalable. We
reported case studies using TensorTiles to accelerate
Intel’s OpenCL FPGA DL Accelerator. Lastly, integrating
FPGAs and ASICs can also be applied to other domains.

REFERENCES

[1] U.Aydonat, S. O'Connell, D. Capalija, et. al., "An OpenCL Deep
Learning Accelerator on Arria 10," ISFPGA 2017.

[2] I. Kuon, J. Rose, “Measuring the Gap between FPGAs and
ASICs,” ISFPGA 2006.

[3] Intel EMIB. intel.com/content/www/us/en/foundry/emib.html

[4] S. Shumarayev, "Stratix 10: Intel’s 14nm Heterogeneous FPGA
System-in-Package (SiP) Platform," HotChips, 2017.

[5] E. Nurvitadhi, et. al., "Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks?," ISFPGA 2017.

[6] N. P. Jouppi, C. Young, N. Patil, et. al., "In-Datacenter
Performance Analysis of a Tensor Processing Unit," ISCA 2017.

[7] E. Chung, J. Fowers, "Accelerating Persistent Neural Networks at
Datacenter Scale," HotChips, 2017.

[8] Intel® GOTM Automotive Solutions. www.intel.com
[9] TSMC CoWoS. www.tsmc.com
[10] P. Collangelo et.al., “Exploration of Low Numeric Precision Deep

Learning Inference Using Intel FPGAs,” FCCM 2018.
[11] A. Mishra, E. Nurvitadhi, J. Cook, D. Marr, "WRPN: Wide

Reduced-Precision Networks," ICLR 2018.
[12] O. Giroux, L. Durant, "Inside Volta", GPU Tech. Conf., 2017.
[13] S. Migacz "8-bit Inference with TensorRT", GTC, 2017.
[14] E. Nurvitadhi, et. al., "Accelerating recurrent neural networks in

analytics servers: Comparison of FPGA, CPU, GPU, and ASIC,"
FPL 2016.

[15] D. Moss, et. al, “A Customizable Matrix Multiplication Framework
for the Intel HARPv2 Xeon+FPGA Platform - A Deep Learning
Case Study,” ISPFGA 2018.

