
 
Figure 1. Proposed single-package multi-chip integration of FPGA and 

domain-specific ASIC accelerator tiles. 
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Abstract— FPGAs or ASICs? FPGAs are extremely flexible 
while ASICs offer top efficiency. We believe that FPGAs and 
ASICs are better together, to offer flexibility and efficiency. 
We propose single-package heterogeneous 2.5D integration 
of FPGAs and ASICs, using Intel’s Embedded Multi-Die 
Interconnect Bridge (EMIB). Since the ASICs are separate 
chips from the FPGA, this approach (1) does not change 
FPGA fabric, allowing re-use of existing ecosystems (FPGA 
chips, packaging, boards, software), and (2) allows freedom 
in ASIC design (area/freq/process/etc unconstrained by 
FPGA fabric). Intel® Stratix® 10 FPGAs already have 
EMIBs, enabling single-package integration with other 
chips, or “tiles”. We propose leveraging them to mix-and-
match any domain-specific ASICs with Stratix10 FPGAs. In 
particular, this work focuses on deep learning (DL) domain, 
which demands efficient tensor (matrix/vector) operations. 
We propose TensorTile ASICs for Stratix10 FPGAs to 
provide ASIC-level tensor performance, while relying on 
FPGA’s flexibility for application-specific operations (e.g., 
Winograd). Our evaluation shows: (1) a small TensorTile 
offer much better tensor throughput than a large Stratix10-
2800 FPGA; (2) FPGAs and TensorTiles mix-and-match 
provide scalable solutions (e.g., ~69 peak INT8 TOPs with 
1xTensorTile+small Stratix10-400 FPGA, to ~194 peak FP16 
TOPs with 6xTensorTiles+large Stratix10-2800); (3) AlexNet 
performance (performance/Watt) of Intel’s DL FPGA design 
improved by 4x (3.3x) when enhanced with 2xTensorTiles.  

I. INTRODUCTION AND BACKGROUND 

The problem: how to improve FPGA efficiency? 
FPGAs are efficient programmable solutions. FPGA fabric 
is very customizable, down to bit-level granularities, which 
allows extracting various levels of parallelisms. As such, 
FPGAs can be more efficient than other programmable 
solutions (e.g., better than GPU in deep learning [5]). 

However, FPGA fabric’s programmability comes at a 
cost. For an application, an ASIC is an order of magnitude 
more efficient than FPGA [2]. Nevertheless, an ASIC is 
inflexible, as it only supports the specific function it is 
designed for. Making an ASIC more general would require 
adding more programmability to the ASIC design, leading 
to inefficiencies. Hence, “general-purpose” programmable 
ASIC is not always better than FPGA. Ideally, we want to 
combine the best of FPGAs and custom ASIC accelerators. 

Previous solution: “general-purpose” hard blocks in 
FPGA fabric. Indeed, in an effort to achieve the best of 
FPGAs and ASICs, existing state-of-the-art FPGAs 
already integrate custom ASIC blocks (e.g., DSPs for math 
operations) to improve FPGA efficiency (Figure 1a). 
However, these ASIC blocks are integrated inside the 
FPGA fabric. Hence, it necessitates modifications to the 
FPGA fabric. Since an FPGA fabric architecture requires 
tremendous effort to develop, it is typically used for the 
entire FPGA product family of the same generation. So, 
ASIC blocks integrated within FPGA fabric need to target 

the general market for FPGAs. Moreover, the scope of the 
ASIC blocks are limited since they need to comply with 
FPGA fabric integration constraints (e.g., meet certain 
delay, size, process technology, etc). Beyond the hardware, 
the FPGA software tools also needs to be modified to 
support targeting such modified FPGA fabric.  

Proposal: Multi-Chip Integration of FPGAs and 
ASICs as System-in-Package (SiP). We propose 
synergistically composing FPGAs and domain-specific 
ASICs, or “tiles”, as multi-chip system-in-package (SiP) 
solutions (Figure 1b), using technologies such as [3][4][9]. 
This novel architecture paradigm offers FPGA flexibility 
and ASIC efficiency. An application domain typically 
contains operations that are shared across the domain and 
specific to each application.  Here, the domain-shared 
operations are implemented on ASIC(s), while the 
application-specific ones on FPGA(s). The ASICs and 
FPGAs are integrated using technologies such as Intel’s 
EMIB [3][4], resulting in improved performance and 
efficiency over “FPGA only” solution, while being more 
flexible/programmable than “ASIC only” solution.  

Furthermore, this approach is extremely cost effective, 
fast to develop, and scalable due to the following reasons.  

(1) Re-use of collaterals (Software, Hardware). We are 
not changing the FPGA fabric, but instead adding ASICs 
next to the FPGA chip via efficient links, such as Intel 
EMIB. So, existing FPGA ecosystems can be reused (e.g., 
FPGA chips, packaging, boards, software), which save 
tremendously on costs and development time. 

The Stratix 10 FPGA family is already made with 
EMIB extensibility to provide SiP solutions [4]. It offers 
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Figure 3. Examples of integrating Stratix 10 FPGA with TensorTiles to offer 

very versatile solutions across use cases. 

myriad of options, from small to large FPGAs, with 
different numbers of EMIB connections to different 
“tiles”. Each FPGA in the family has at least an EMIB 
link. These links utilize efficient interfaces (AIB, UIB) [4], 
and offer data streaming with ~1 Tbps bandwidth.  

(2) Scalability/versatility through customized solutions. 
There is freedom of choice of ASIC tiles to use (e.g., a 
library of already-available “off-the-shelf” tiles, or new 
custom tiles). These tiles are not constrained by FPGA in-
fabric integration constraints. ASIC area, frequency, and 
process, etc can be optimized flexibly (e.g., older process 
for cost savings, or latest process for performance). 

Current Stratix 10 FPGAs offer transceiver tiles. Here, 
we propose domain-specific ASIC accelerator tiles. The 
ability to mix-and-match any Stratix10 FPGA with set of 
tiles leads to a versatile and scalable solutions (Figure 1c). 
One can use a small FPGA with one tile (e.g., embedded), 
or a large FPGA with 6 tiles (e.g., data centers). Generally, 
arbitrary FPGAs and ASICs can be composed, resulting in 
many possible integration options.  

Deep Learning Case Study. This paper presents a 
case study for the Deep Learning (DL) domain. DL is at 
the forefront of Artificial Intelligence revolution. DL based 
on Deep Neural Networks (DNN) heavily rely on tensor 
computations (i.e., matrix/vector multiply/accumulate). To 
this end, many have proposed accelerators for DL, based 
on FPGAs [1][5][7][10][14][15], GPUs [13], and ASICs 
[6]. They offer improved tensor processing. FPGA‘s fine-
grained spatial configurability can be especially appealing, 
due to the need for extreme customizations in DNN 
solutions (e.g., as elaborated in [5]). There are industry 
trends to use FPGAs for DL, from data centers (Microsoft 
Brainwave [7]) to automotive (Intel GOTM [8]) 
applications. Nevertheless, FPGA’s flexibility comes at a 
cost. A fixed-function ASIC tensor accelerator may offer 
top efficiency, but is less flexible than FPGAs. We propose 
integrating FPGAs with DL accelerator ASICs. 

TensorTile: Tensor ASIC Accelerator for Stratix 
10. We present a novel ASIC tile, called TensorTile. It 
complements FPGAs to execute commonly used tensor 
operations in DNNs with ASIC-level efficiency. Stratix 10 
enhanced with TensorTiles can flexibly implement 
application/use-case specific customized DNN functions 
on FPGAs (e.g., Winograd), while utilizing TensorTiles to 

deliver optimal tensor performance. Figure 2 shows an 
example Stratix 10 FPGA running Intel DL Accelerator 
[1], offloading tensor operations to a TensorTile. 

Our evaluation shows: (1) a small TensorTile (10s in 
mm2, 14nm process) offer much better tensor throughput 
than a large Stratix10-2800 FPGA; (2) FPGAs and 
TensorTiles mix-and-match provide scalable solutions 
(e.g., ~69 peak INT8 TOPs with 1xTensorTile+small 
Stratix10-400 FPGA, to ~194 peak FP16 TOPs with 
6xTensorTiles+large Stratix10-2800); (3) AlexNet 
performance/Watt and performance of Intel’s DL OpenCL 
Stratix10 FPGA [1] improved by 3.3x and 4x when 
enhanced with 2x TensorTiles. Overall, this approach is 
effective and scalable. 

II. TENSOR-TILE: DEEP LEARNING ASIC 

ACCELERATOR FOR STRATIX 10 FPGAS 

A. TensorTile Overview 

Given the growing importance of DL, this paper 
proposes TensorTiles ASIC accelerators to complement 
FPGAs to offer extremely efficient execution of key tensor 
operations in DL. Unlike “ASIC-only” accelerators, our 
design does not include support for all DNN operations, 
since they are left for FPGA to handle. Unlike “FPGA-
only” accelerators, TensorTile ASIC gives major 
efficiency improvements on tensor operations. It can be 
used with any FPGA design for any tensor-heavy 
applications (e.g., DL, wireless, cognitive radio, HPC, etc).  

TensorTiles can be mixed and matched with a variety 
of Stratix10 FPGAs to form scalable customized solutions. 
Figure 3 shows several example use cases, such as 
maximizing flexibility and efficiency (Figure 3a), freeing 
up FPGA space to deploy more applications (Figure 3b), 
and maximizing efficiency while maintaining sufficient 
flexibility through the use of smaller FPGA (Figure 3c). 

Using TensorTile. FPGA developer use TensorTile 
through a well-defined interface, in the same way as using 
existing FPGA components in Quartus library. Developers 
access TensorTile(s) through Quartus library to be 
included in their design. Note that any other new tiles (for 
other domains) can be included in the same fashion. 

Operations supported by TensorTile. TensorTile 
supports key matrix/vector tensor multiply/accumulate 
operations commonly used in deep learning domain. We 
support low precision operations, including below 8-bit, 
such as INT4. Very low precision DNNs have recently 
been shown to deliver good accuracies (e.g., [11]). 

Examples of operations suited for FPGA. On the 



Figure 4. TensorTile Architecture. Overall architecture is shown in (a), PE 
internal in (b), and Data Management Unit in (c). Then, (d) depicts an 

example place & routed 4-PE design. 

other hand, algorithm optimizations such as FFT and 
Winograd transforms are good only for certain convolution 
sizes and therefore is application-specific. Similarly, data 
management from/to off-chip memory can be application 
specific with different formats and/or data layouts (e.g., 
images vs. speech data). This type of application-specific 
operations are better suited for FPGA. 

B. TensorTile Interface and Architecture 

Interface. TensorTile ASIC interfaces to the FPGA 
chip in a prototypical fashion as existing external hard 
blocks (e.g., PCIe), except connections are done via chip-
to-chip links (i.e., EMIB). The FPGA sends commands 
and data to tell the ASIC what to do. The ASIC performs 
the commands and provides results back to FPGA. An 
FPGA designer interfaces with TensorTile by instantiating 
a “wrapper” block via Quartus library, which connects to 
the appropriate FPGA pins associated with the TensorTile. 
Then, the FPGA designer could implement any desired 
logic to command the ASIC, provide data to compute, and 
consume the ASIC results. In particular, TensorTile uses a 
multiple bi-directional streaming interfaces (s-ifcs), as 
shown in Figure 4a. It can support a “fully unified mode” 
where an FPGA application can use the entire TensorTile 
through all the s-ifcs, or a “clustered mode” where the s-
ifcs are divided across multiple FPGA applications. (Each 
application gets a portion of the TensorTile).  

Architecture. TensorTile is based on a systolic array 
of processing elements (PEs), as shown in Figure 4a. The 
array is divided into multiple clusters, each connects to a 
streaming interface (s-ifc). A cluster consists of a systolic 
chain of PEs to perform computations, and a data 
management unit (DMU) to transfer data between FPGA 
chip, PEs, and neighboring cluster(s). As shown in Figure 
4b, a PE contains dot product engines and a scratchpad to 
feed them with PE-local data. It also contains feeder and 
drainer blocks to receive input and send output. The DMU 
also contains feeder and drainer blocks, as in Figure 4c. 
Figure 4d shows a 14nm 4-PE design we placed/routed. 

How it works. Input feature map (IFM) is convoluted 
against filters to produce output feature map (OFM), and 
computation for each filter is assigned to a PE. First, the 
filters are loaded into each PE’s scratchpad. Then, IFM 
blocks are streamed to the PEs. As the PEs receive the 

IFMs, they perform dot product operation against the filter 
in their scratchpads, and keep track of running sums. As 
OFM elements are computed, they are drained from the 
PEs into the FPGA via a chain of drainer blocks.  

Extracting parallelism. To be able to extract various 
levels of parallelism and scale to more PEs, we incorporate 
reduction units in each drainer block. This facilitates 
reducing partial sums within PEs, across PEs, and across 
clusters. Consequently, it allows taking advantage of 
multiple dimensions of parallelism.  

Data reuse. To optimize reuse during convolution, the 
feeder in DMU contains reuse buffer (R-buf in Figure 4c). 
It keeps a block of IFM at DMU and re-uses it across 
multiple convolution windows computed by PEs. 

C. Example: Using TensorTile to Accelerate Intel FPGA 
OpenCL Deep Learning Accelerator (DLA). 

Even though TensorTile can be used with any FPGA 
design, this paper evaluates TensorTile with Intel OpenCL 
DL Accelerator (DLA) [1], as depicted in Figure 2. DLA 
consists of components to move data between the FPGA 
and off-chip memories, and to perform DNN functions 
(Pool, Norm, ReLU, Winograd). It also has processing 
elements (PEs) for tensor dot products. A sequencer unit 
controls the overall execution of the architecture. 

TensorTile(s) naturally extends the DLA architecture, 
where PEs that are currently on FPGA can be (1) offloaded 
to TensorTile to free up FPGA resources, or (2) augmented 
by further tensor processing done by TensorTile.  

In practice, other existing DL accelerators also rely on 
dot product PEs for tensor processing (e.g., [7][10][15]). 
Hence, TensorTiles can be used in similar fashion with any 
of these existing FPGA DL accelerators. 

TABLE I.  EXPLORING THE DESIGN SPACE OF TENSORTILES, FOR 

SMALL AREA (10S IN MM2) AND POWER (<15W) ON INTEL 14NM. 
(*CLASS C IS OPTIMIZED FOR COMPUTE AND S FOR ON-CHIP STORAGE) 

Data 
Type 

Tile 
Class* 

On-chip Storage 
(MBs) 

Performance 
(TOP/s) 

Efficiency 
(TOP/s/W) 

FP16 S 10 20.7 1.7 
 C 7.3 30 2.6 

INT8 S 11 46 3.5 
 C 8.4 69 5.2 

INT4 S 10.7 87 7 
 C 8.4 138 10.4 

III. EVALUATION 

A. Tensor-Tile performance and efficiency 

First, we explored TensorTiles design space to study 
the range of peak performances and on-chip storage across 
variety of tiles. There is large design space of FPGA/ASIC 
integration because multiple EMIB-links can be connected 
to arbitrary size chips. Here, we investigated small and 
lightweight TensorTiles that target 10s in mm2 area with 
<15 Watts of power. It is possible to scale up TensorTiles 
(more area, power). Such study is left for future work.  

Peak Performance and On-chip Storage. We studied 
the TensorTiles in Table 1, with varying precisions (FP16-
INT4), compute throughput, and on-chip scratchpads 
(SPADs). The optimal tile depends on target applications. 
E.g., data-intensive RNNs may prefer more SPADs. We 
implemented our designs in RTL and synthesized them to 
14nm Intel process. As shown in Table 1, the tiles offer 
wire range of performance (20-138 TOP/s). 
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Figure 5. Exploring the design space of Stratix 10 FPGAs with TensorTiles, 

and comparison with FPGAs and GPUs. 

Peak Performance and On-chip Storage of Stratix 
10 FPGAs with TensorTiles. TensorTiles can be 
integrated with any FPGA in Stratix 10 family. Figure 5 
shows peak performance and performance/watt for several 
possible combinations. Included are two FPGAs, large 
Stratix 10 2800 and medium Stratix 10 2100 with HBMs. 
We show baseline FPGA with no tile, with 1 tile, and with 
maximum tiles (6 tiles for 2800 FPGA, 4 tiles for 2100 
FPGA). The Stratix 10 FPGA performance baseline is 
estimated using the method in [10]. We also include GPU 
numbers, based on public information. Figure 5(g) shows 
aggregate on-chip storage size in the system. TensorTiles 
enhanced Stratix 10 solutions cover a wide range of 
performance/watt, performance, and on-chip storage. For 
example, a Stratix10 2800 and 6 tiles offer almost 200 
FP16 TFLOPs of peak performance, surpassing the 
NVIDIA VoltaTM GPU with TensorCores [12]. With the 
versatility of our approach, one could choose optimal 
combinations of FPGAs with number/types of tiles.  

For inference, we focus on low-precisions DNNs. As 
Figure 5 shows, the scaled up 2800 FPGA with 6 tiles can 
go up to 851 TOP/s INT4 or 483 TOP/s INT8. On the 
other end, even one tile and the smaller 2100 FPGA can 
offer 83 TOP/s INT8 or 152 TOP/s INT4. One could also 
choose to go even smaller for more constrained use case 
(e.g., automotive, embedded). While not shown in the 
figure, one could integrate a small Stratix 10 400 (378K 
LEs) with a single TensorTile-C tile that can deliver ~69 
INT8 peak TOPs and ~138 INT4 peak TOPs. 

In overall, Performance/Watts are very compelling as 
well. FPGAs are traditionally known to be power efficient 
solution. The TensorTiles adds the capability to further 
improve FPGA efficiency substantially, while offering 
peak performance. In our study, each tile uses <15Watts, 
and all tiles under study deliver on average ~4x more 
tensor throughput than the large Stratix10 2800 FPGA. 

Finally, on-chip storage offered by these tiles are non-
trivial. For applications that need large storage (e.g., 
persistent DNNs [7]), a 2800 FPGA with 6 tiles can offer 
up to 88 MB aggregated on-chip RAMs to accommodate 
large footprints needed by modern DNNs. As an example, 
Figure 6 shows footprint of various Resnets (34 to 152 
layers) for batch 1 to 8 commonly used in inference. Even 
the deepest Resnet-152 with 8 batches can fit in the on-
chip storage of the 2800 FPGA with 6 TensorTiles.  

B. Case study: Intel OpenCL Deep Learning Accelerator 
(DLA)  with TensorTiles 

Second, we studied TensorTiles to accelerate Intel 
OpenCL FPGA DL Accelerator (DLA) [1]. We compared 
performance and efficiency of FPGA only, FPGA with 
TensorTiles, and GPU. We target Stratix 10 2100 and 2800 
FPGAs. In each, we studied configuration with 2 and 4 
TensorTiles. DLA is modified to use TensorTiles (Figure 
2) to perform the most demanding task (vector operations). 
Other operations (e.g., off-chip data handling, Winograd) 
are done in FPGA, taking advantage of FPGA’s flexibility. 

We conducted two case studies, based on prior 
published DLA work [1][10]. Using these “FPGA-only” 
DLA baselines, we re-target their designs to use 
TensorTiles. To scale up to multiple TensorTiles, we 
instantiated multiple DLA instances (minus the PE array), 
each one offloads tensor operations to its own TensorTile. 

These studies show the benefits of FPGA flexibility. The 
first study targets FP16 AlexNet with Local Response 
Normalization and Winograd [1]. The second study targets 
INT4 AlexNet with batch norm and no Winograd [10]. 

We considered TensorTiles from the previous sub-
section. For performance modeling, we used DLA 
framework from [1], which was enhanced to model 
TensorTile (e.g., FPGA and TensorTile ASIC links). The 
framework also allows exploring design parameters, which 
we used to find optimal configuration. We ended up with a 
configuration based of TensorTile-S (~20TFLOP/s FP16). 

Figure 7 shows the results of our case studies. For 
comparison, we also include GPU results [12][13]. 
Averaging across two case studies, two TensorTiles offer 
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Figure 6. Required on-chip storage sizes to make Resnets persistent, for 

various depths (34-152) and batch sizes (1-8). The large on-chip storage of 
2800 FPGA with 6xTensorTiles can accommodate all of these Resnet 
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chip storage, and can only fit batch 1 configuration of Resnet 34 and 50. 
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Figure 7. Alexnet Performance and Performance/Watt from case studies 
using Stratix 10 FPGAs and TensorTiles. We also include published GPU 

results [12][13]. The FP16 results are estimated based on published Resnet-
50 GPU results [12], scaled by the number of ops in Resnet-50/Alexnet. The 

results are for max batch size within 7ms latency (noted as “b7ms”). 

~3.8x and ~3.1x improvements in performance and 
performance/watt relative to FPGA with no tiles. Four 
TensorTiles increase these improvements to 7.6x and 5.3x.  

Furthermore, going below 8-bit precision seems to be a 
compelling solution. E.g., Stratix 10 2800 with 4 tiles with 
INT4 precision can achieve 173K img/sec on AlexNet, 
substantially higher than the GPUs (Figure 7(a)). 

In comparison to GPUs, FPGAs with TensorTiles offer 
not only better efficiency (performance/watt), but also 
more versatility and scalability. For the important low-
batch inference, even Stratix 10 without TensorTiles are 
already quite compelling relative to GPUs. The use of 
TensorTiles offer further performance and efficiency. With 
just 2 TensorTiles, Stratix 2100 and 2800 based solutions 
provide better performance and efficiency than Titan X, 
and comparable to Volta GPUs. Scaling to 4 tiles allows 
surpassing Volta GPU’s performance and efficiency.  

In overall, as latency-bound uses cases continues to 
grow (e.g., [7]), FPGAs and/or FPGAs with TensorTiles 
are more favorable than GPUs. For throughput oriented 
use cases (with large batch size), FPGAs with TensorTiles 
allow scaling up to beyond the peak throughput of GPUs. 

IV. RELATED WORK 

Existing FPGAs. Existing FPGAs have hard ASIC 
blocks (e.g., DSPs for math) in their fabric. However, 
changing FPGA fabric requires significant effort and costs. 
The functionalities supported also has to be general-
purpose enough across FPGA market. The proposed 
approach does not require any fabric modifications. 

Non-FPGA accelerators. Compared to GPUs 
[12][13], FPGAs are more flexible as it allows finer 
grained programmability. Our approach improves the 
existing FPGAs by adding domain-specific ASICs to them.  

Compared to existing ASICs (e.g. [6]), our approach 
leverages existing FPGAs for flexibility/programmability. 
An “ASIC-only” solution is inflexible. A more general 
ASIC with programmability can incur overheads in design 
complexity, efficiencies, and effort/costs.  

Deep Learning Accelerators. There are many existing 
deep learning accelerators on ASIC, FPGA, and GPU (e.g., 
[1][5][6][7][8][10][12][13][14][15]). To our knowledge, 
this paper is the first to synergistically combine FPGAs 
and domain-specific ASICs through multi-chip integration. 

V. CONCLUSIONS 

We propose integration of FPGAs and domain-specific 
ASICs in a single package, using Intel’s EMIB. This 
approach does not require FPGA fabric modifications, and 
can leverage Intel Stratix 10 FPGAs’ already built with 
EMIBs. Specifically, we proposed TensorTiles ASICs to 
complement FPGAs for DL applications. Evaluation 
shows TensorTiles are very efficient and scalable. We 
reported case studies using TensorTiles to accelerate 
Intel’s OpenCL FPGA DL Accelerator. Lastly, integrating 
FPGAs and ASICs can also be applied to other domains. 
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